Role of protein misfolding in DFNA9 hearing loss.

نویسندگان

  • Jianhua Yao
  • Bénédicte F Py
  • Hong Zhu
  • Jianxin Bao
  • Junying Yuan
چکیده

Mutations in the COCH (coagulation factor C homology) gene have been attributed to DFNA9 (deafness, autosomal-dominant 9), an autosomal-dominant non-syndromic hearing loss disorder. However, the mechanisms responsible for DFNA9 hearing loss remain unknown. Here, we demonstrate that mutant cochlin, the protein product of the COCH gene, forms a stable dimer that is sensitive to reducing agent. In contrast, wild-type (WT) cochlin may form only dimers transiently. Interestingly, the presence of mutant cochlin can stabilize WT cochlin in dimer conformation, providing a possible mechanism for the dominant nature of DFNA9 mutations. Furthermore, the expression of mutant cochlin eventually induces WT cochlin to form stable oligomers that are resistant to reducing agent. Finally, we show that mutant cochlin is cytotoxic in vitro and in vivo. Our study suggests a possible molecular mechanism underlying DFNA9 hearing loss and provides an in vitro model that may be used to explore protein-misfolding diseases in general.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel COCH mutation, V104del, impairs folding of the LCCL domain of cochlin and causes progressive hearing loss.

R ecently the causative gene of autosomal dominant sensorineural nonsyndromic late onset hearing loss (DFNA9) has been identified as the COCH gene, which lies in the DFNA9 region of human chromosome 14 (gene map locus 14q12–q13). Molecular analysis of cases of DFNA9 have identified several families with five different mutations in this gene. The cochlin protein encoded by COCH is an extracellul...

متن کامل

ONLINE MUTATION REPORT A novel COCH mutation, V104del, impairs folding of the LCCL domain of cochlin and causes progressive hearing loss

R ecently the causative gene of autosomal dominant sensorineural nonsyndromic late onset hearing loss (DFNA9) has been identified as the COCH gene, which lies in the DFNA9 region of human chromosome 14 (gene map locus 14q12–q13). Molecular analysis of cases of DFNA9 have identified several families with five different mutations in this gene. The cochlin protein encoded by COCH is an extracellul...

متن کامل

Subcellular localisation, secretion, and post-translational processing of normal cochlin, and of mutants causing the sensorineural deafness and vestibular disorder, DFNA9.

Five missense mutations in the FCH/LCCL domain of the COCH gene, encoding the protein cochlin, are pathogenic for the autosomal dominant hearing loss and vestibular dysfunction disorder, DFNA9. To date, the function of cochlin and the mechanism of pathogenesis of the mutations are unknown. We have used the biological system of transient transfections of the entire protein coding region of COCH ...

متن کامل

Cochlin immunostaining of inner ear pathologic deposits and proteomic analysis in DFNA9 deafness and vestibular dysfunction.

Seven missense mutations and one in-frame deletion mutation have been reported in the coagulation factor C homology (COCH) gene, causing the adult-onset, progressive sensorineural hearing loss and vestibular disorder at the DFNA9 locus. Prevalence of COCH mutations worldwide is unknown, as there is no systematic screening effort for late-onset hearing disorders; however, to date, COCH mutations...

متن کامل

Physico - Chemical characterization of the native and mutant protein cochlin , and its role in adult - onset hearing and balance loss

This thesis investigates the role of the protein cochlin and its isoforms in DFNA9 autosomal dominant late onset senorineural loss and vestibular disorder by quantifying the concentration of cochlin in the inner fluid called perilymph. Through the use of affinity chromatography, high performance liquid chromatography, the Bradford assay, western blot analysis, and proteomics analysis by mass sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 20  شماره 

صفحات  -

تاریخ انتشار 2010